PERATING

A [:um:aul BHSEII Auuruauh

Dhananjay M. Dhamdhere

Chapter 17
Theoretical Issues in Distributed Systems

Copyright © 2008

Introduction

Notions of Time and State

States and Events in a Distributed System
Time, Clocks and Event Precedences
Recording the State of a Distributed System

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008 17.2

Notions of Time and State

* Time indicates when an event occurred
« State of an entity is the condition/mode of its being
— Depends on its features

» Global state of a system comprises the states of all
entities in the system at a specific instant of time

* OS uses the notions of time and state for performing
scheduling of resources and the CPU:

— Find chronological order in which requests occurred
— Distributed OS uses them for recovery

* Problem: lack of global clock in distributed systems

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008 17.3

States and Events in a Distributed
System

 Local and Global States
 Events

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008 17.4

Local and Global States

« Each entity in a system has its own state
— State of a memory cell is the value contained in it
— State of CPU is contents of PSW and GPRs

— State of process:

« State of memory allocated to it, CPU state (if running), state
of interprocess communication

« The state of an entity is a local state
— State of process P, at time t: S;!

 Global state: collection of local states of all entities at
the same instant of time

— Global state of system at time t: S,={S/, SJ,..., S}

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008 17.5

Events

* An event can be: sending/receiving a message (over a
channel), or other (no messages involved)

— Channel: an interprocess communication path
* Process state changes when an event occurs in it

 We represent an event as follows:
(process id, old state, new state, event description, channel, message)

— Channel and message are “-” if event does not involve
sending or receiving of a message

Event £

e
Old state T New state
'Df Pk § 'Df Pk

Figure 17.1 Change of state in process Py on occurrence of event (P, s,s’,send, c,m).

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008 17.6

Time, Clocks, and Event Precedences

 @Global clock: abstract clock that can be accessed from
different sites of a distributed system with identical

results
— Cannot be implemented in practice due to unbounded
communication delays

« Alternative: use local clocks in processes
— Local clocks should be reasonably well synchronized

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008 17.7

Event Precedence

* e, — e, Indicates event e, precedes e, in time
— l.e., e, occurred before e,

« Event ordering implies arranging a set of events in a
sequence such that each event in the sequence
precedes the next one

A total order (with respect to “—") exists if all events
that can occur in a system can be ordered

— A partial order implies that some events can be ordered
but not all events can be ordered

A casual relationship is used to deduce precedences
— A "message send” event precedes “message receive”

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008 17.8

Event Precedence (continued)

Table 17.1 Rules for Ordering of Events in a Distributed System

Category Description of rule

Events within a process The OS performs event handling, so it knows the order
in which events occur within a process.

Events in different In a causal relationship, 1.e., a cause-and-effect

processes relationship, an event that corresponds to the cause

precedes an event in another process that corresponds
to the effect.

Transitive precedence The precedes relation is transitive; i.e.,] — e and
€7 — ey implies e} — e3.

* e precedes g, ! If e, and e, exist such that e, —e,, e, — e
or e = e and e, —e;ore =g

* g followse;: If e;and e, exist such thate, — e, e, —¢,
ore = e, and e, —e;ore, =g

* €, Is concurrent with e; : If e; neither precedes nor follows e,

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008 17.9

Example: Event Precedence

« Timing diagram: plot of the activities of different
processes against time

— Events in P; are denoted as ¢;, €, ..
— €,3 IS @ message send event for message m,
— €4, IS a message receive event

€11 €12 €13
it

P, o o

e
) C

€21 €2 €23 €24

Figure 17.2 Event precedence via timing diagram.

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008

17.10

Logical Clocks

« Timestamping (according to local clock) of events
provides a direct method of event ordering

— Clocks are loosely synchronized using causality

Algorithm 17.1 Clock Synchronization

1. When a process Py wishes to send a message m to process P Py executes
a command “send Py, (ts(send(m)), m),” where ts(send(m)) is a timestamp
obtained just prior to sending message m.

2. When process P; receives a message: Process P; performs the actions

if local clock(Py) < ts(send(m)) then
local clock(Py) := ts(send(m)) + 8;
timestamp the receive event.
where local clock(P;) is the value in the local clock of process P; and § is the
average communication delay in the network.

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008 17.11

Logical Clocks (continued)

* Alogical clock (LC,) is incremented by 1 only when an
event occurs in process P,

R1
R2

A process Py increments LCy by 1 whenever an event occurs in it.

When process Pj receives a message m containing ts(send(m)), Py

sets its clock by the rule LCy = max (LCy, ts(send(m))+1).

€11 €13

(9, 10) H{} 2?1 (27, 28)

PJ .
€22 m
\rl] 12) / \
P,
{’34
\ / m]izgjl
Py

tql f.j,':

(24, 25) (25, 26)

Figure 17.3 Synchronization of logical clocks.

— ts(e) <ts(g) if e, — ¢
— Problem: ts(e;) < ts(e) does not imply e, — ¢,

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008

17.12

Obtaining Unique Timestamps

» Logical clock timestamps are not unique, so cannot be
used to obtain a total order over events

* Problem can be overcome by using a pair pts(e;) as the
timestamp of e;, where
— pts(e;) = (local time, process id)
« Event ordering rules:
e; precedes e; iff (i) pts(e).local time < pts(e;).local time, or
(ii) pts(e).local time = pts(e;).local time and
pts(e;).process id < pts(e)).process id

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008 17.13

Vector Clocks

* A vector clock contains n elements, where n is the
number of processes in the distributed system

VCi k] The logical clock of process Py,

VCiIN.1 #k The highest value in the logical clock of process P; which 1s
known to process Pi—that is, the highest value of VC[/]
known to it

R3 A process Pj increments VCy[k] by | whenever an event occurs in it.
R4 When process Py receives a message m containing vis(send(m)). Py
sets 1ts clock as follows:
For all I: VCy[l] = max (VCg[I]. vis(send(m))[[]).

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008 17.14

Vector Clocks (continued)

* Precedence rules:
— €; precedes e;:
» Forall I vis(e;)[f] = vis(e;)[/], but
for some k: vts(e;)[k] = vis(e;)[K]
— e, follows e
» Forall I vis(e;)[]] 2 vis(e;)[]], but
for some k: vts(e;)[k] = vis(e;)[K]
— €;, e;are concurrent:
* For some k, I: vis(e;)[K] < vis(e;)[K], and vts(e;)[1 > vis(e;)[]]
* vis(e;) < vts(e;)[l] if and only if &; — e,

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008 17.15

Example: Synchronization of Vector
Clocks

€11 €12 €13
(10,0.0) (11.4.26) (12,4.26)

] I

my €22 My my
(10,4.0)
PE o O O o
{1‘21 {1"23 {?24
(10.3.0) m (10.5.0) (12,6,26)
Py

et e

€31 €32
(10.4.25)(10.4.26)

Figure 17.4 Synchronization of vector clocks.

« Total order can be obtained using a pair
pvis(e;) = (local time, process id) as timestamp of e;

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008 17.16

Recording the State of a Distributed
System

* Problem: it is not possible to get all nodes to record
their states at the same time instant

— Local clocks are not perfectly synchronized

— Any other collection of local states may be inconsistent
 Alternative: algorithm for obtaining a consistent

collection of local states

— Collected state not a substitute for the global state

* However, has properties that facilitate some of the control
functions in a distributed OS

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008 17.17

Recording the State of a Distributed
System (continued)

 Example: inconsistent state recording
— Banking application: P, in N, and P, in N,

A B
Jlxlrl Jlxlrg

Figure 17.5 A funds transfer system.

* Actions:
1. P, debits $100 to account A in node N,
2. P, sends message to P, to credit $100 to account B
3. P, credits $100 to account B in node N,
— Inconsistent if A’s balance is recorded before (1) and B’s
balance is recorded after (3)

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008 17.18

Consistent State Recording

« State recording: collection of local states of entities in a
system obtained through some algorithm

« Consistent state recording: one in which process states
of every pair of processes in the system are consistent

according to:

Definition 17.1 Mutually Consistent Local States L ocal states of processes
P and P; are mutually consistent if
1. Every message recorded as “received from P;” in P;’s state is recorded as
*sent to Pr.” in P;’s state, and
2. Every message recorded as “received from P, in P;’s state is recorded as
*sent to P;” in Pi’s state.

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008 17.19

Properties of a Consistent State
Recording

P
P,
Chy, Chys
Py
P, Py
S ™ P4

Chis

Figure 17.6 A distributed computation for state recording. Figure 17.7 A timing diagram for the distributed computation of Figure 17.6.

Table 17.2 Local States of Processes Process states are recorded at tP1-- 1:P4

Process Description of recorded state

Py No messages have been sent. Message m>| has been received.

P> Messages m> and m173 have been sent. No messages have been
received.

P No messages have been sent. Message mi43 has been received.

Py No messages have been sent. No messages have been received.

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008 17.20

Properties of a Consistent State
Recording (continued)

Definition 17.2 Cut of a System A curve that connects the points in a tim-
ing diagram at which states of processes are recorded, in increasing order by
process number.

 “A cutis taken” means that a collection of local states is
recorded

* A cut represents a consistent state recording of a
system if the states of each pair of processes satisfy
Definition 17.1

« State of a channel is the set of messages it contains

* A cut may intersect with a message:
— Forward or backward intersection
— Backward intersection makes a cut inconsistent

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008 17.21

Properties of a Consistent State
Recording (continued)

« Consistency condition for a cut:

— CC: Cut C represents a consistent state recording of a
distributed system if future of cut is closed under the
precedes relation on events (closed under “—")

G

Figure 17.8 Consistency of cuts—cuts C4,C5 are consistent while C3 is inconsistent.

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008 17.22

Chandy—-Lamport Algorithm for state
recording

« Assumptions of the algorithm
— Channels are FIFO
— Channels are unidirectional
— Channels have unbounded message buffering capacities

« The state of a process indicates the messages sent and
received by it

* A special message called a marker is sent to ask a
process to record its state

— Process receives markers over all channels incident on it
 Records state of channel over which it received a marker
 Ifitis the first marker received, it also records its own state

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008 17.23

An Algorithm for Consistent State
Recording

Notation:

Received; : Messages received by P, over channel Ch;
Recorded_recd; : Messages recorded as received in the state of P

Algorithm 17.2 Chandy—Lamport Algorithm

1. When a process P; initiates the state recording: P; records its own state and
sends a marker on each outgoing channel connected to it.
2. When process P; receives a marker over an incoming channel Ch;j: Process P;
performs the following actions:
a. If P; had not received any marker earlier, then
i. Record its own state.
ii. Record the state of channel Chj; as empty.
ili. Send a marker on each outgoing channel connected to it.
b. Otherwise, record the state of channel Chj; as the set of messages
Receivedj — Recorded_recd;.

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008 17.24

Example: Operation of the
Chandy- Lamport Algorithm

My My
P, Py Py . B
P, A A
<>Hi'l
._.l
Py P,

(a)
Figure 17.9 Example of the Chandy-Lamport algorithm: system at times 0,271, and 5.

Table 17.3 Recorded States of Processes and Channels in

Figure 17.9

Entity Description of recorded state

Py Message m| has been sent. No messages have been
received.

P No messages have been sent or received.

P Messages my and my have been sent. Message m has been
received.

Chyo Empty

Chys Empty

Chys Contains the messages m» and ni

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008

17.25

Example: Recorded State versus
Global State

{’.‘“ {'.’u {’.‘13

PJ o

Py F— ¢
th €41 €4

Figure 17.10 State recording of the system of Figures 17.6 and 17.7.

Table 17.4 A Recorded State that Does Not Match Any Global State

Entity* Description of recorded state

Py No messages have been sent. Message m7| has been received.
Py Message m171 has been sent. No messages have been received.
Py No messages have been sent or received.

Py No messages have been sent or received.

* States of all channels are recorded as empty.

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008 17.26

Summary

« QOperating systems use notions of time and state
— Local state: State of an entity
— Global state: States of all entities at the same time instant

* Precedence of events may be deduced using the
causal relationship, i.e., cause-and-effect relationship,
and transitivity property of precedence

e Some events may be concurrent

 ltis laborious to deduce the precedence of events by
using transitivity, hence timestamps are used instead

— Use local clocks in processes

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008 17.27

Summary

» Using local clocks in processes
— Logical clocks
— Vector clocks

 Include process ids in timestamps for total ordering
 ltis not possible to record the global state of a system

« Chandy-Lamport algorithm obtains consistent recording
of process states using special messages called
markers

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008 17.28

