
Chapter 17

Theoretical Issues in Distributed Systems

Copyright © 2008

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008 17.2 Operating Systems, by Dhananjay Dhamdhere 2

Introduction

• Notions of Time and State

• States and Events in a Distributed System

• Time, Clocks and Event Precedences

• Recording the State of a Distributed System

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008 17.3 Operating Systems, by Dhananjay Dhamdhere 3

Notions of Time and State

• Time indicates when an event occurred

• State of an entity is the condition/mode of its being

– Depends on its features

• Global state of a system comprises the states of all

entities in the system at a specific instant of time

• OS uses the notions of time and state for performing

scheduling of resources and the CPU:

– Find chronological order in which requests occurred

– Distributed OS uses them for recovery

• Problem: lack of global clock in distributed systems

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008 17.4 Operating Systems, by Dhananjay Dhamdhere 4

States and Events in a Distributed

System

• Local and Global States

• Events

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008 17.5 Operating Systems, by Dhananjay Dhamdhere 5

Local and Global States

• Each entity in a system has its own state

– State of a memory cell is the value contained in it

– State of CPU is contents of PSW and GPRs

– State of process:

• State of memory allocated to it, CPU state (if running), state

of interprocess communication

• The state of an entity is a local state

– State of process Pk at time t: Sk
t

• Global state: collection of local states of all entities at

the same instant of time

– Global state of system at time t: St={S1
t, S2

t,…, Sn
t}

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008 17.6 Operating Systems, by Dhananjay Dhamdhere 6

Events

• An event can be: sending/receiving a message (over a

channel), or other (no messages involved)

– Channel: an interprocess communication path

• Process state changes when an event occurs in it

• We represent an event as follows:
(process id, old state, new state, event description, channel, message)

– Channel and message are “–” if event does not involve

sending or receiving of a message

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008 17.7 Operating Systems, by Dhananjay Dhamdhere 7

Time, Clocks, and Event Precedences

• Global clock: abstract clock that can be accessed from

different sites of a distributed system with identical

results

– Cannot be implemented in practice due to unbounded

communication delays

• Alternative: use local clocks in processes

– Local clocks should be reasonably well synchronized

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008 17.8 Operating Systems, by Dhananjay Dhamdhere 8

Event Precedence

• e1 → e2 indicates event e1 precedes e2 in time

– i.e., e1 occurred before e2

• Event ordering implies arranging a set of events in a

sequence such that each event in the sequence

precedes the next one

• A total order (with respect to “→”) exists if all events

that can occur in a system can be ordered

– A partial order implies that some events can be ordered

but not all events can be ordered

• A casual relationship is used to deduce precedences

– A “message send” event precedes “message receive”

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008 17.9 Operating Systems, by Dhananjay Dhamdhere 9

Event Precedence (continued)

• ei precedes ej : If ek and el exist such that ek →el , ei → ek

 or ei ≡ ek, and el →ej or el ≡ ej

• ei follows ej : If eg and eh exist such that eg → eh, ej →eg

 or ej ≡ eg, and eh →ei or eh ≡ ei

• ei is concurrent with ej : If ei neither precedes nor follows ej

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008 17.10 Operating Systems, by Dhananjay Dhamdhere 10

Example: Event Precedence

• Timing diagram: plot of the activities of different

processes against time

– Events in Pi are denoted as ei1, ei2, ..

– e23 is a message send event for message m1

– e12 is a message receive event

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008 17.11 Operating Systems, by Dhananjay Dhamdhere 11

Logical Clocks

• Timestamping (according to local clock) of events

provides a direct method of event ordering

– Clocks are loosely synchronized using causality

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008 17.12 Operating Systems, by Dhananjay Dhamdhere 12

Logical Clocks (continued)

• A logical clock (LCk) is incremented by 1 only when an
event occurs in process Pk

– ts(ei) < ts(ej) if ei → ej

– Problem: ts(ei) < ts(ej) does not imply ei → ej

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008 17.13 Operating Systems, by Dhananjay Dhamdhere 13

Obtaining Unique Timestamps

• Logical clock timestamps are not unique, so cannot be

used to obtain a total order over events

• Problem can be overcome by using a pair pts(ei) as the

timestamp of ei, where

– pts(ei) ≡ (local time, process id)

• Event ordering rules:
ei precedes ej iff (i) pts(ei).local time < pts(ej).local time, or

 (ii) pts(ei).local time = pts(ej).local time and

 pts(ei).process id < pts(ej).process id

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008 17.14 Operating Systems, by Dhananjay Dhamdhere 14

Vector Clocks

• A vector clock contains n elements, where n is the

number of processes in the distributed system

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008 17.15 Operating Systems, by Dhananjay Dhamdhere 15

Vector Clocks (continued)

• Precedence rules:

– ei precedes ej:

• For all l: vts(ei)[l] ≤ vts(ej)[l], but

 for some k: vts(ei)[k]  vts(ej)[k]

– ei follows ej:

• For all l: vts(ei)[l] ≥ vts(ej)[l], but

 for some k: vts(ei)[k]  vts(ej)[k]

– ei , ej are concurrent:

• For some k, l: vts(ei)[k] < vts(ej)[k], and vts(ei)[l] > vts(ej)[l]

• vts(ei) < vts(ej)[l] if and only if ei → ej

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008 17.16 Operating Systems, by Dhananjay Dhamdhere 16

Example: Synchronization of Vector

Clocks

• Total order can be obtained using a pair

 pvts(ei) ≡ (local time, process id) as timestamp of ei

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008 17.17 Operating Systems, by Dhananjay Dhamdhere 17

Recording the State of a Distributed

System

• Problem: it is not possible to get all nodes to record

their states at the same time instant

– Local clocks are not perfectly synchronized

– Any other collection of local states may be inconsistent

• Alternative: algorithm for obtaining a consistent

collection of local states

– Collected state not a substitute for the global state

• However, has properties that facilitate some of the control

functions in a distributed OS

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008 17.18 Operating Systems, by Dhananjay Dhamdhere 18

Recording the State of a Distributed

System (continued)

• Example: inconsistent state recording

– Banking application: P1 in N1 and P2 in N2

• Actions:

1. P1 debits $100 to account A in node N1

2. P1 sends message to P2 to credit $100 to account B

3. P2 credits $100 to account B in node N2

– Inconsistent if A’s balance is recorded before (1) and B’s

balance is recorded after (3)

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008 17.19 Operating Systems, by Dhananjay Dhamdhere 19

Consistent State Recording

• State recording: collection of local states of entities in a

system obtained through some algorithm

• Consistent state recording: one in which process states

of every pair of processes in the system are consistent

according to:

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008 17.20 Operating Systems, by Dhananjay Dhamdhere 20

Properties of a Consistent State

Recording

A cut

Process states are recorded at tP1.. tP4

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008 17.21 Operating Systems, by Dhananjay Dhamdhere 21

Properties of a Consistent State

Recording (continued)

• “A cut is taken” means that a collection of local states is

recorded

• A cut represents a consistent state recording of a

system if the states of each pair of processes satisfy

Definition 17.1

• State of a channel is the set of messages it contains

• A cut may intersect with a message:

– Forward or backward intersection

– Backward intersection makes a cut inconsistent

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008 17.22 Operating Systems, by Dhananjay Dhamdhere 22

Properties of a Consistent State

Recording (continued)

• Consistency condition for a cut:

– CC: Cut C represents a consistent state recording of a

distributed system if future of cut is closed under the

precedes relation on events (closed under “→”)

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008 17.23

Chandy–Lamport Algorithm for state

recording

• Assumptions of the algorithm

– Channels are FIFO

– Channels are unidirectional

– Channels have unbounded message buffering capacities

• The state of a process indicates the messages sent and

received by it

• A special message called a marker is sent to ask a

process to record its state

– Process receives markers over all channels incident on it

• Records state of channel over which it received a marker

• If it is the first marker received, it also records its own state

Operating Systems, by Dhananjay Dhamdhere 23

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008 17.24 Operating Systems, by Dhananjay Dhamdhere 24

An Algorithm for Consistent State

Recording

• Notation:
Receivedij : Messages received by Pj over channel Chij

Recorded_recdij : Messages recorded as received in the state of Pj

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008 17.25 Operating Systems, by Dhananjay Dhamdhere 25

Example: Operation of the

Chandy−Lamport Algorithm

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008 17.26 Operating Systems, by Dhananjay Dhamdhere 26

Example: Recorded State versus

Global State

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008 17.27 Operating Systems, by Dhananjay Dhamdhere 27

Summary

• Operating systems use notions of time and state

– Local state: State of an entity

– Global state: States of all entities at the same time instant

• Precedence of events may be deduced using the

causal relationship, i.e., cause-and-effect relationship,

and transitivity property of precedence

• Some events may be concurrent

• It is laborious to deduce the precedence of events by

using transitivity, hence timestamps are used instead

– Use local clocks in processes

Operating Systems, by Dhananjay Dhamdhere Copyright © 2008 17.28 Operating Systems, by Dhananjay Dhamdhere 28

Summary

• Using local clocks in processes

– Logical clocks

– Vector clocks

• Include process ids in timestamps for total ordering

• It is not possible to record the global state of a system

• Chandy-Lamport algorithm obtains consistent recording

of process states using special messages called

markers

